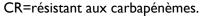
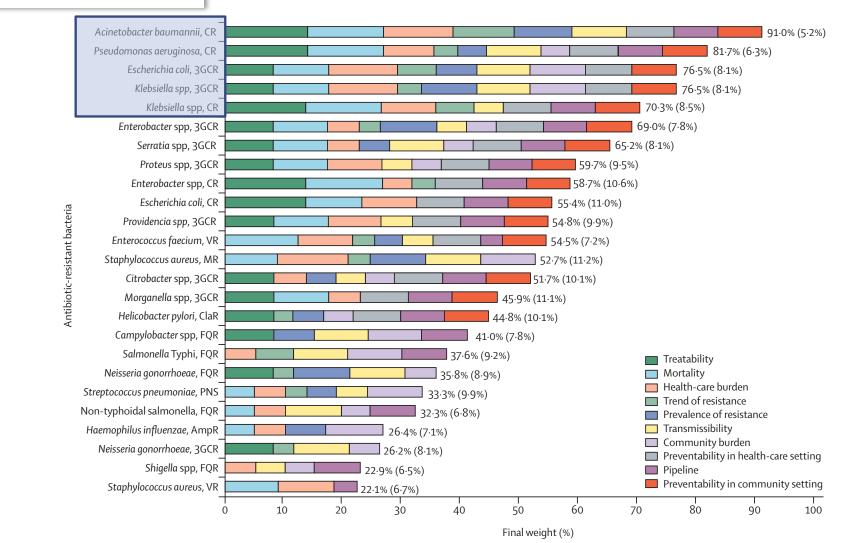
Journée OUTCOMEREA 14 octobre 2022

## FAUT-IL ÉPARGNER LES NOUVELLES MOLÉCULES ANTIBIOTIQUES (ANTI GRAM -) ? LE POINT DE VUE DU CLINICIEN

**AURÉLIEN DINH** 


MALADIES INFECTIEUSES

HÔPITAL RAYMOND-POINCARÉ / AMBROISE-PARÉ


UNIVERSITÉ PARIS SACLAY

### Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis

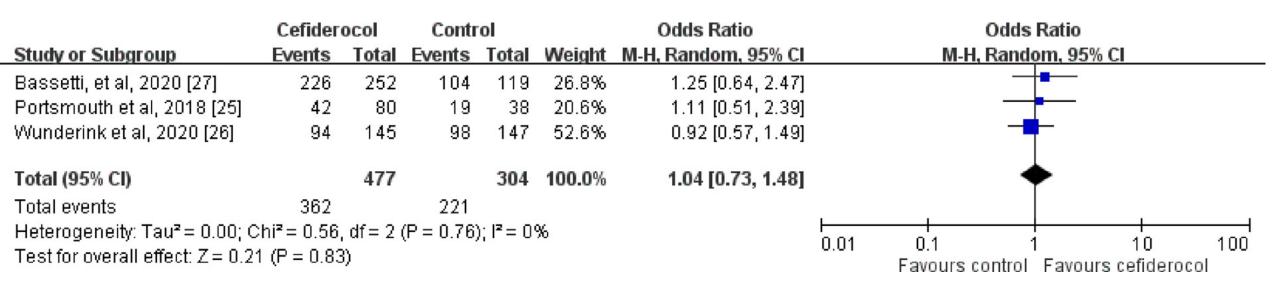
Evelina Tacconelli, Elena Carrara\*, Alessia Savoldi\*, Stephan Harbarth, Marc Mendelson, Dominique L Monnet, Céline Pulcini, Gunnar Kahlmeter, Jan Kluytmans, Yehuda Carmeli, Marc Ouellette, Kevin Outterson, Jean Patel, Marco Cavaleri, Edward M Cox, Chris R Houchens, M Lindsay Grayson, Paul Hansen, Nalini Singh, Ursula Theuretzbacher, Nicola Magrini, and the WHO Pathogens Priority List Working Group†



- 3GCR=résistant aux céphalosporines de troisième
- génération.
- VR=résistant à la vancomycine.
- MR=résistant à la méticilline.
- ClaR=résistant à la clarithromycine.
- FQR=résistant aux fluoroquinolones.
- PNS=non sensible à la pénicilline.
- mpR=résistant à l'ampicilline



## COMMENT CHOISIR ?


- Microbiologie
- RCT
- Données de « vraie vie »

## CEFIDEROCOL

## ESSAIS CLINIQUES

| Essais                       | Design                                                            | Durée de  | Sites                  | Indications                                                               | N de patients |             | Posologie           |                                                 |
|------------------------------|-------------------------------------------------------------------|-----------|------------------------|---------------------------------------------------------------------------|---------------|-------------|---------------------|-------------------------------------------------|
| Essais                       | Design                                                            |           |                        |                                                                           |               | Comparateur | Cefiderocol         | Comparateur                                     |
| Portsmouth et<br><i>al</i> . | Non infériorité<br>double aveugle<br>(phase 2)                    | 2015-2016 | 65 hôpitaux<br>I5 pays | IU compliquées                                                            | 300           | 148         | 2g X3 (1h)<br>7-14j | lmipenème<br>cilastatine<br>Ig X3 (1h)<br>7-14j |
| APEKS-NP<br>Wunderink et al  | Non infériorité<br>double aveugle<br>(phase 3)                    | 2017-2019 | 76 hôpitaux<br>17 pays | Pneumonies<br>nosocomiales à<br>BGN                                       | 148           | 150         | 2g X3 (3h)<br>7-14j | Méropénème<br>2g X3 (3h)<br>7-14j               |
| CREDIBLE-CR<br>Basseti et al | Essai randomisé<br>descriptif<br>ouvert ciblé sur<br>le pathogène | 2016-2019 | 95 hôpitaux<br>16 pays | Pneumonies<br>nosocomiales,<br>bactériémies,<br>sepsis, IU<br>compliquées | 101           | 49          | 2g X3 (3h)<br>7-14j | Meilleur<br>traitement<br>disponible<br>7-14j   |

## ESSAIS RANDOMISÉS

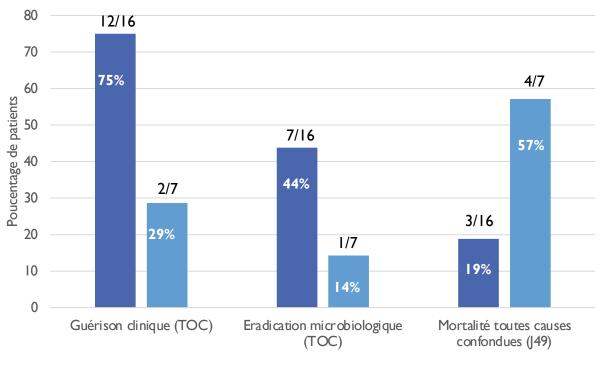


Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial

Matteo Bassetti, Roger Echols, Yuko Matsunaga, Mari Ariyasu, Yohei Doi, Ricard Ferrer, Thomas P Lodise, Thierry Naas, Yoshihito Niki, David L Paterson, Simon Portsmouth, Julian Torre-Cisneros, Kiichiro Toyoizumi, Richard G Wunderink, Tsutae D Nagata

|                                           | Cefiderocol<br>(n=101) | Best available<br>therapy (n=49) |
|-------------------------------------------|------------------------|----------------------------------|
| Sex                                       |                        |                                  |
| Male                                      | 66 (65%)               | 35 (71%)                         |
| Female                                    | 35 (35%)               | 14 (29%)                         |
| Age (years)                               |                        |                                  |
| Mean (SD)                                 | 63.1 (19.0)            | 63.0 (16.7)                      |
| Clinical diagnosis                        |                        |                                  |
| Nosocomial pneumonia                      | 45 (45%)               | 22 (45%)                         |
| HAP                                       | 20 (20%)               | 7 (14%)                          |
| VAP                                       | 24 (24%)               | 13 (27%)                         |
| HCAP                                      | 1(1%)                  | 2 (4%)                           |
| Bloodstream infections or sepsis†         | 30 (30%)               | 17 (35%)                         |
| Bloodstream infection                     | 22 (22%)               | 9 (18%)                          |
| Complicated intra-<br>abdominal infection | 3 (3%)                 | 2 (4%)                           |
| Skin and skin structure infection         | 1(1%)                  | 0                                |
| Intravenous line<br>infection             | 4 (4%)                 | 2 (4%)                           |
| Other‡                                    | 5 (5%)                 | 1 (2%)                           |
| Unknown                                   | 9 (9%)                 | 4 (8%)                           |
| Sepsis                                    | 8 (8%)                 | 8 (16%)                          |
| Complicated intra-<br>abdominal infection | 2 (2%)                 | 1 (2%)                           |
| Skin and skin structure infection         | 4 (4%)                 | 3 (6%)                           |
| Intravenous line infection                | 0                      | 3 (6%)                           |
| Other‡                                    | 2 (2%)                 | 1 (2%)                           |
| Complicated urinary tract infection       | 26 (26%)               | 10 (20%)                         |

|                               | Cefiderocol<br>(n=101)           | Best available<br>therapy (n=49) |  |  |  |  |  |  |  |
|-------------------------------|----------------------------------|----------------------------------|--|--|--|--|--|--|--|
| (Continued from previous colu | (Continued from previous column) |                                  |  |  |  |  |  |  |  |
| Creatinine clearance (mL/min) | )                                |                                  |  |  |  |  |  |  |  |
| Mean (SD),                    | 85.8 (79.3)                      | 88·9 (64·2)                      |  |  |  |  |  |  |  |
| Median (range; IQR)           | 59·2 (9·4–539·26;<br>33·9–107·9) | 69·4 (4·6–270·8;<br>47·6–119·8)  |  |  |  |  |  |  |  |
| Empirical treatment failure   | 58 (57%)                         | 27 (55%)                         |  |  |  |  |  |  |  |
| Previous therapy§             |                                  |                                  |  |  |  |  |  |  |  |
| Antibiotics¶                  | 93 (92%)                         | 49 (100%)                        |  |  |  |  |  |  |  |
| Carbapenems                   | 60 (59%)                         | 26 (53%)                         |  |  |  |  |  |  |  |
| Systemic corticosteroids      | 44 (44%)                         | 17 (35%)                         |  |  |  |  |  |  |  |
| ICU at randomisation          | 57 (56%)                         | 21 (43%)                         |  |  |  |  |  |  |  |
| Shock                         | 19 (19%)                         | 6 (12%)                          |  |  |  |  |  |  |  |
| Immunocompromised             | 27 (27%)                         | 10 (20%)                         |  |  |  |  |  |  |  |
| Positive blood culture        | 25 (25%)                         | 13 (27%)                         |  |  |  |  |  |  |  |
| APACHE II score               |                                  |                                  |  |  |  |  |  |  |  |
| Mean (SD)                     | 15·3 (6·5)                       | 15.4 (6.2)                       |  |  |  |  |  |  |  |
| Median (range; IQR)           | 15 (2–29; 11–20)                 | 14 (2–28; 11–20)                 |  |  |  |  |  |  |  |
| ≤15                           | 55 (54%)                         | 27 (55%)                         |  |  |  |  |  |  |  |
| 16–19                         | 17 (17%)                         | 9 (18%)                          |  |  |  |  |  |  |  |
| ≥20                           | 29 (29%)                         | 13 (27%)                         |  |  |  |  |  |  |  |
|                               |                                  |                                  |  |  |  |  |  |  |  |


- Essai clinique ouvert, randomisé avec un contrôle actif (2:1) et une analyse descriptive
- Patients en état critique et souffrant d'infections diverses (IU, PN, BSI) résistantes aux carbapénèmes
- 29 régimes de contrôle différents utilisés dans 95 centres

|                                 | Cefiderocol<br>(n=80) | Best availab<br>therapy (n= |
|---------------------------------|-----------------------|-----------------------------|
| Number of carbapenem-resis      | stant Gram-negat      | ive pathogens fro           |
| Dne                             | 62 (78%)              | 30 (79%)                    |
| wo                              | 13 (16%)              | 8 (21%)                     |
| hree                            | 4 (5%)                | 0                           |
| our                             | 1(1%)                 | 0                           |
| ype of carbapenem-resistar      | t Gram-negative       | pathogen                    |
| II patients                     | N=87†                 | N=40‡                       |
| Acinetobacter baumannii         | 37 (46%)              | 17 (45%)                    |
| Klebsiella pneumoniae           | 27 (34%)              | 12 (32%)                    |
| Pseudomonas aeruginosa          | 12 (15%)              | 10 (26%)                    |
| Stenotrophomonas<br>maltophilia | 5 (6%)                | 0                           |
| Acinetobacter nosocomialis      | 2 (3%)                | 0                           |
| Enterobacter cloacae            | 2 (3%)                | 0                           |
| Escherichia coli                | 2 (3%)                | 1(3%)                       |
|                                 |                       |                             |

## INFECTIONS À MÉTALLO-B-LACTAMASES

### Caractéristiques des infections à métallo-β-lactamases

|                 | Céfidérocol | MTD |
|-----------------|-------------|-----|
| Total           | 16          | 7   |
| Bactériémie     | 4           | Í   |
| PN              | 6           | 3   |
| IU              | 6           | 3   |
| Entérobactéries | 10          | 4   |
| P. aeruginosa   | 4           | 3   |
| A. baumannii    | 2           | 0   |



Céfiderocol MTD

\*Incluant NDM, VIM, IMP; PN: pneumonie nosocomiale, IU: infection urinaire, MTD: meilleur traitement disponible Bassetti 2020 Lancet ID et rapport de l'étude CREDIBLE-CR

## MORTALITÉ SELON BACTÉRIE

|                                                                                                    | Cefiderocol<br>n/N (%)<br>(95%IC (%)) | MTD<br>n/N (%)<br>(95%IC (%)) |
|----------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------|
| Tous les patients                                                                                  | 34/101 (33,7)<br>(24,6- 43,8)         | 10/49 (20,4)<br>(10,2-34,3)   |
| Patients avec une infection à Acinetobacter spp.                                                   | 21/42 (50)<br>(34,2- 65,8)            | 3/17 (17,6)<br>(3,8-43,4)     |
| Patients avec une infection sans<br>Acinetobacter (comprenant entérobactéries ou<br>P. aeruginosa) | 13/59 (22)<br>(12,3-34,7)             | 6/32 (18,8)<br>(7,2- 36,4)    |
| Entérobactéries<br>P. aeruginosa                                                                   | 6/28 (21,4)<br>2/11 (18,2)            | 4/15 (26,7)<br>2/11 (18,2)    |

\*Parmi ces patients, 30% (16) avaient des souches ayant une CMI au méropénème supérieure à 64 mg/L. Bassetti 2020 Lancet ID et rapport de l'étude CREDIBLE-CR; 2: Wunderick 2020 Lancet ID

### ACINETOBACTER SPP.

| Paramètre à l'inclusion                           | Patients avec u<br>Acinetob |        | Patients avec une infection sans<br>Acinetobacter (comprenant<br>entérobactéries ou P. aeruginosa) |         |  |  |  |
|---------------------------------------------------|-----------------------------|--------|----------------------------------------------------------------------------------------------------|---------|--|--|--|
|                                                   | Cefiderocol MTD             |        | Cefiderocol                                                                                        | MTD     |  |  |  |
| Age<br>≥ 65 ans, n (%)                            | 26 (62)                     | 7 (41) | 38 (64)                                                                                            | 15 (47) |  |  |  |
| Total APACHE II<br>$\geq$ 16, n (%)               | 24 (57)                     | 8 (47) | 22 (37)                                                                                            | 14 (44) |  |  |  |
| Choc dans le mois précédent<br>l'inclusion, n (%) | II (26)                     | l (6)  | 8 (14)                                                                                             | 5 (16)  |  |  |  |
| Hospitalisation en USI à la randomisation         | 34 (81)                     | 8 (47) | 23 (39)                                                                                            | 13 (41) |  |  |  |

### Cefiderocol as Rescue Therapy for *Acinetobacter baumannii* and Other Carbapenem-resistant Gramnegative Infections in Intensive Care Unit Patients

Marco Falcone,<sup>1</sup> Giusy Tiseo,<sup>1</sup> Manuela Nicastro,<sup>2</sup> Alessandro Leonildi,<sup>3</sup> Alessandra Vecchione,<sup>3</sup> Costanza Casella,<sup>2</sup> Francesco Forfori,<sup>2,4</sup> Paolo Malacarne,<sup>2</sup> Fabio Guarracino,<sup>2</sup> Simona Barnini,<sup>3</sup> and Francesco Menichetti<sup>1</sup>

- I0 patients en soins critiques : bactériémies (n=) ou PAVM (n=) due à ABRI, S. maltophilia, ou NDM-K. pneumoniae
- Guérison à J30 : 70%
- Survie à J30 : 90%
- 2 échecs microbiologiques

| Age/ Sex | Underlying Diseases                       | APACHE II Score | Isolated Pathogen                                   | CFDC MIC<br>µg/mL |     | Initial Treatment<br>Regimen | CFDC<br>Dosage | Mono-<br>therapy | CRRT | Outcome<br>at 30 d | 30-d<br>Mortality |
|----------|-------------------------------------------|-----------------|-----------------------------------------------------|-------------------|-----|------------------------------|----------------|------------------|------|--------------------|-------------------|
| 76/F     | Hypertension Bipolar<br>disorder          | 44              | A. baumannii                                        | 0.25              | BSI | COL + TGC                    | 2 g q8h        | Yes              | Yes  | Failure            | No                |
| 82/M     | Cerebrovascular disease<br>Bladder cancer | 43              | A. baumannii                                        | 0.5               | BSI | COL + TGC + FOS              | 2 g q8h        | Yes              | No   | Success            | No                |
| 65/F     | Hypertension Obesity                      | 46              | A. baumannii                                        | 0.5               | BSI | COL                          | 2 g q8h        | Yes              | No   | Failure            | No                |
| 33/F     | IV drug user                              | 34              | A. baumannii                                        | 0.5               | BSI | COL + TGC                    | 2 g q6h        | Yes              | No   | Success            | No                |
| 82/F     | Hypertension Previous stroke              | 25              | A. baumannii                                        | 0.25              | BSI | COL + TGC + MEM              | 1.5 g q8h      | Yes              | No   | Success            | No                |
| 75/F     | Hypertension Ischemic cardiomyopathy      | 29              | A. baumannii                                        | 0.5               | BSI | TGC + SAM                    | 2 g q6h        | Yes              | No   | Success            | No                |
| 79/F     | Hypertension                              | 39              | NDM-producing Kp<br>Stenotrophomonas<br>maltophilia | 1/0.5             | VAP | CAZ-<br>AVI + ATM + FOS      | 2g q6h         | Yes              | No   | Success            | No                |
| 44/M     | Hypertension Obesity                      | 40              | NDM-producing Kp                                    | 1                 | VAP | COL + FOS                    | 2g q6h         | Yes              | No   | Success            | No                |
| 77/M     | Hypertension                              | 36              | <i>A. baumannii</i> + NDM-<br>producing Kp          | 0.12/2            | VAP | COL + CAZ-<br>AVI + ATM      | 1.5 g q8h      | No <sup>a</sup>  | Yes  | Failure            | Yes               |
| 72/M     | Hypertension                              | 30              | A. baumannii                                        | 0.5               | VAP | COL + TGC                    | 2g q6h         | Yes              | No   | Success            | No                |

CEDC

Clinical



#### Article

### Cefiderocol-Based Combination Therapy for "Difficult-to-Treat" Gram-Negative Severe Infections: Real-Life Case Series and Future Perspectives

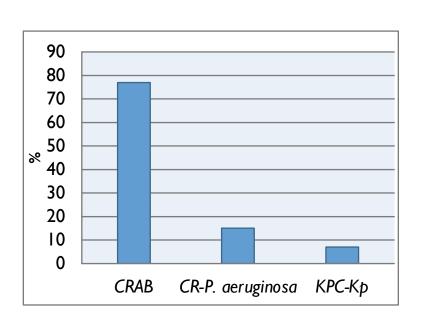
Davide Fiore Bavaro <sup>1,\*,†</sup>, Alessandra Belati <sup>1,†</sup>, Lucia Diella <sup>1,†</sup>, Monica Stufano <sup>2</sup>, Federica Romanelli <sup>3</sup>, Luca Scalone <sup>4</sup>, Stefania Stolfa <sup>3</sup>, Luigi Ronga <sup>3</sup>, Leonarda Maurmo <sup>4</sup>, Maria Dell'Aera <sup>5</sup>, Adriana Mosca <sup>3</sup>, Lidia Dalfino <sup>2</sup>, Salvatore Grasso <sup>2</sup> and Annalisa Saracino <sup>1</sup>

- I3 patients traités du ler Septembre 2020 au 31 Mars 2021
- 5/13 (38%) USI
- 4/13 (31%) infections post-chirurgicales
- 4/13 (31%) patients ID (2/4: transplantés d'organe; 2/4: hémopathie)

| Pt | Age, y | Sex | Cause of Hospedalization                                                | Underlying Diseases                                       |
|----|--------|-----|-------------------------------------------------------------------------|-----------------------------------------------------------|
| 1  | 68     | м   | COVID19                                                                 | Huntington Corea, Imobilization syndrome                  |
| 2  | 62     | F   | COVID19                                                                 | Fibromyalgia                                              |
| 3  | 69     | м   | COVID19                                                                 | Hypertension, Diabetes                                    |
| 4  | 78     | м   | COVID19                                                                 | Hypertension, COPD, Diabetes                              |
| 5  | 75     | F   | COVID19                                                                 | Diabetes                                                  |
| 6  | 38     | м   | Dyspnoea post orotracheal intubation<br>for cerebral hemorragy          | Hypertension, Pulmonary Embolism                          |
| 7  | 70     | м   | PTCA due to myocardial Infarction in<br>course of COVID-19              | Mild COVID19, Diabetes, Ischemic heart disease            |
| 8  | 64     | м   | Neurosurgical wound Infection                                           | Previous drainage of post-traumatic subarachnoid hematoma |
| 9  | 25     | м   | Subocclusion and volvulus treated with gut surgical resection           | Colostomy, Hip and Arm fracture                           |
| 10 | 60     | м   | Sepsis                                                                  | Hepatic transplantation for HBV-related cirrosis and HCC  |
| 11 | 43     | м   | Myocardial Infarction and cardiogenic<br>shock, Arrhythmic storm, Acute | Heart transplantation                                     |
| 12 | 57     | м   | COVID19                                                                 | Myelodysplastic syndrome                                  |
| 13 | 68     | м   | Pneumonia                                                               | Acute Myeloid Leukemia, Chronic Kidney Disease            |

**MDPI** 




#### Article

### Cefiderocol-Based Combination Therapy for "Difficult-to-Treat" Gram-Negative Severe Infections: Real-Life Case Series and Future Perspectives

Davide Fiore Bavaro <sup>1,\*,†</sup><sup>(b)</sup>, Alessandra Belati <sup>1,†</sup>, Lucia Diella <sup>1,†</sup>, Monica Stufano <sup>2</sup>, Federica Romanelli <sup>3</sup>, Luca Scalone <sup>4</sup>, Stefania Stolfa <sup>3</sup>, Luigi Ronga <sup>3</sup>, Leonarda Maurmo <sup>4</sup>, Maria Dell'Aera <sup>5</sup>, Adriana Mosca <sup>3</sup>, Lidia Dalfino <sup>2</sup>, Salvatore Grasso <sup>2</sup> and Annalisa Saracino <sup>1</sup>

- Eradication microbiologique : 100%
- Survie J30 : 10/13; 2 décès dus au SARS-CoV-2
- I décès due à une infection intercurrente
- Pas de récidive à J30

**MDPI** 



| Pt | Type of Infection                      | Cefiderocol Based Therapy                   | Outcome                     | Outcome at 30      |
|----|----------------------------------------|---------------------------------------------|-----------------------------|--------------------|
|    |                                        | (Duration, day)                             |                             | days               |
| 1  | CVC-related BSI with Septic Shock      | FDC, FOF, TGC (5)                           | Microbiological Eradication | Death†             |
| 2  | CVC-related BSI with Septic Shock      | FDC, CST, MEM (13)                          | Recovery                    | Success            |
| 3  | CVC-related BSI with Septic Shock      | FDC, CST (10)                               | Recovery                    | Success            |
| 4  | CVC-related BSI with Sepsis            | FDC, TGC (8)                                | Recovery                    | Success            |
| 5  | CVC-related BSI with Sepsis            | FDC, FOF (5)                                | Recovery                    | Success            |
| 6  | VAP                                    | FDC, FOF, TGC (9)                           | Recovery                    | Success            |
| 7  | Bloodstream infection                  | FDC, CST, FOF (8)                           | Recovery                    | Success            |
| 8  | Neurosurgical Wound Infection          | FDC, FOF (10)                               | Recovery                    | Success            |
| 9  | Perihepatic Abscess, Septic Shock      | FDC, TGC, DAP, FOF (21)                     | Recovery                    | Success            |
| 10 | Hepatic Abscess, Bloodstream infection | FDC, TGC, CST (17), then<br>FDC, FOF (11) * | Recovery                    | Success            |
| 11 | VAP, Bloodstream infection             | FDC, TGC, CST, FOF (16)                     | Microbiological Eradication | Death <sup>†</sup> |
| 12 | Bloodstream infection                  | FDC, CST (12)                               | Microbiological Eradication | Death†             |
| 13 | Pneumonia                              | FDC, FOF (10)                               | Recovery                    | Success            |

Bavaro DF, et al. Antibiotics 2021

Cefiderocol for the Treatment of Adult and Pediatric Patients With Cystic Fibrosis and *Achromobacter xylosoxidans* Infections

Nathaniel C. Warner,<sup>1</sup> Luther A. Bartelt,<sup>1</sup> Anne M. Lachiewicz,<sup>1</sup> Kathleen M. Tompkins,<sup>1</sup> Melissa B. Miller,<sup>2,3</sup> Kevin Alby,<sup>2,3</sup> Melissa B. Jones,<sup>2</sup> Amy L. Carr,<sup>4</sup> Jose Alexander,<sup>5</sup> Andrew B. Gainey,<sup>6</sup> Robert Daniels,<sup>6</sup> Anna-Kathryn Burch,<sup>6,7</sup> David E. Brown,<sup>6,7</sup> Michael J. Brownstein,<sup>8</sup> Faiqa Cheema,<sup>9</sup> Kristin E. Linder,<sup>10</sup> Ryan K. Shields,<sup>11,12</sup> Sarah Longworth,<sup>13</sup> and David van Duin<sup>1</sup>

| Patient        | Age, y | Treatment<br>Course | Duration, d | Additional<br>Antibiotics <sup>a</sup> | CFDC MIC Pretreatment                                                        | Syndrome             | Lung Trans-<br>plantation | Clinical<br>Outcome | Microbio-<br>logic Relapse | CFDC Suscepti-<br>bility Posttreatment |
|----------------|--------|---------------------|-------------|----------------------------------------|------------------------------------------------------------------------------|----------------------|---------------------------|---------------------|----------------------------|----------------------------------------|
| 1              | 28     | 1a                  | 42          | TZP                                    | 0.12 mg/L (S)                                                                | Bacteremic pneumonia | Post                      | Resolved            | Yes                        | Susceptible                            |
|                |        | 1b                  | 42          | None                                   | ≤0.03 mg/L (S)                                                               | Pneumonia            | Post                      | Resolved            | Yes                        | Not tested                             |
| 2              | 17     | 2a                  | 42          | MEM, SXT,<br>iTOB                      | 1 mg/L (S)                                                                   | Post-BOLT regimen    | Post                      | Improved            | Yes                        | Susceptible                            |
| 3              | 29     | За                  | 19          | CZA, SXT                               | >64 mg/L (R)                                                                 | Post-BOLT regimen    | Post                      | Stable              | Yes                        | Not tested                             |
| 4              | 41     | 4a                  | 21          | ERV, DLX,<br>iCST                      | 0.06 mg/L (S)                                                                | Pneumonia            | Pre                       | Resolved            | Yes                        | Susceptible                            |
|                |        | 4b                  | 21          | ERV, iCST                              | 17 mm <sup>b</sup> (l)                                                       | Bacteremia pneumonia | Post                      | Resolved            | Yes                        | Susceptible                            |
| 5              | 25     | 5a                  | 21          | ERV, IPM,<br>iAMK                      | 0.06 mg/L (S)                                                                | Pneumonia            | NA                        | Resolved            | Yes                        | Susceptible                            |
| 6 <sup>c</sup> | 10     | 6a                  | 14          | MVB,<br>phage <sup>d</sup>             | 32 mg/L (R)                                                                  | Pneumonia            | NA                        | Improved            | Yes                        | Resistant                              |
|                |        | 6b                  | 14          | MVB,<br>phage <sup>d</sup>             | Achromobacter xylosoxidans 16 mg/L (R)<br>Achromobacter ruhlandii 1 mg/L (S) | Pneumonia            | NA                        | Resolved            | No                         | NA                                     |
| 7 <sup>e</sup> | 56     | 7a                  | 2           | CST                                    | Strain 1: 1 mg/L (S)<br>Strain 2: 64 mg/L (R)                                | Pneumonia            | Pre                       | Improved            | Yes                        | Not tested                             |
|                |        | 7b                  | 14          | SXT                                    | Not tested                                                                   | Empyema              | Post                      | Resolved            | Yes                        | Not tested                             |
| 8              | 28     | 8a                  | 14          | SXT, iAMK                              | 20 mm <sup>b</sup> (S)                                                       | Pneumonia            | Post                      | Resolved            | Yes                        | Not tested                             |

#### **Open Forum Infectious Diseases**

#### MAJOR ARTICLE



### Cefiderocol Activity Against Clinical *Pseudomonas aeruginosa* Isolates Exhibiting Ceftolozane-Tazobactam Resistance

Patricia J. Simner,<sup>1</sup> Stephan Beisken,<sup>2</sup> Yehudit Bergman,<sup>1</sup> Andreas E. Posch,<sup>2</sup> Sara E. Cosgrove,<sup>3,0</sup> and Pranita D. Tamma<sup>4,0</sup>

|                      |                                                                                                                                                                                                                                    | TOL-TAZ<br>MIC,<br>mcg/mL |     | MIC, MI |     | IMI-REL<br>CAZ-AVI MIC,<br>MIC, mcg/<br>mcg/mL mL |    | Cefideroco |      |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----|---------|-----|---------------------------------------------------|----|------------|------|--|
| Isolate <sup>b</sup> | Clinical Summary <sup>c</sup>                                                                                                                                                                                                      | а                         | b   | а       | b   | а                                                 | b  | а          | b    |  |
| 12a-b                | 16 yo M, ventilator-dependent with <i>P. aeruginosa</i> pneu-<br>monia. Received TOL-TAZ 3g q8h × 6d (no HD); other<br>β-lactams: meropenem (7d). Alive at day 30: yes.                                                            | 4                         | 2   | 32      | 4   | 8                                                 | 8  | 0.25       | 0.25 |  |
| 13a-b                | 53 yo M, 60% body surface area burns with <i>P. aeruginosa</i> pneumonia. Received TOL-TAZ 3g q8h × 6d (no HD); other β-lactams: meropenem (10d). Alive at day 30: no.                                                             | 1                         | 0.5 | 16      | 4   | 4                                                 | 4  | 0.5        | 0.5  |  |
| 14a-b                | 55 yo F, anoxic brain injury with <i>P. aeruginosa</i> pneu-<br>monia. Received TOL-TAZ 3g q8h × 7d (no HD); other<br>β-lactams: meropenem (3d). Alive at day 30: yes.                                                             | 2                         | 8   | 16      | 16  | 8                                                 | 4  | 0.5        | 1    |  |
| 15a-b                | 74 yo M, ventilator-dependent with <i>P. aeruginosa</i> pneu-<br>monia. Received TOL-TAZ 3g q8h × 6d (HD); other<br>β-lactams: none. Alive at day 30: yes.                                                                         | 1                         | 256 | 2       | 256 | 4                                                 | 32 | 0.12       | 0.25 |  |
| 16a-b                | 65 yo M, ventricular assist device with <i>P. aeruginosa</i> bac-<br>teremia and device-associated infection, device not<br>removed. Received TOL-TAZ 3g q8h × 16d (HD); other<br>β-lactams: meropenem (1d). Alive at day 30: yes. | 1                         | 256 | 8       | 32  | 32                                                | 4  | 0.12       | 1    |  |

- Mutations dans région AmpC-AmpR associées à résistance à ceftolozanetazobactam (TOL-TAZ) et ceftazidimeavibactam (CAZ-AVI)
- 32 paires d'isolats de 16 patients
  - isolats index de P. aeruginosa sensibles à TOL-TAZ
  - isolats après traitement par TOL-TAZ
- 4/16 paires : **7** ≥4x CMI au cefiderocol
- Mutations AmpC E247K : 7 ≥4x CMI à TOL-TAZ et CAZ-AVI + ≥4x CMI à IMI-REL
- Altérations sites de liaison d'AmpC βlactamases dérivées de *P. aeruginosa* :
  - Peuvent réduire l'activité de 3 sur 4 nouveaux β-lactamines (ie, ceftolozanetazobactam, ceftazidime-avibactam, et cefiderocol)
  - Peuvent augmenter susceptibilité à imipenem-relebactam



## MDPI

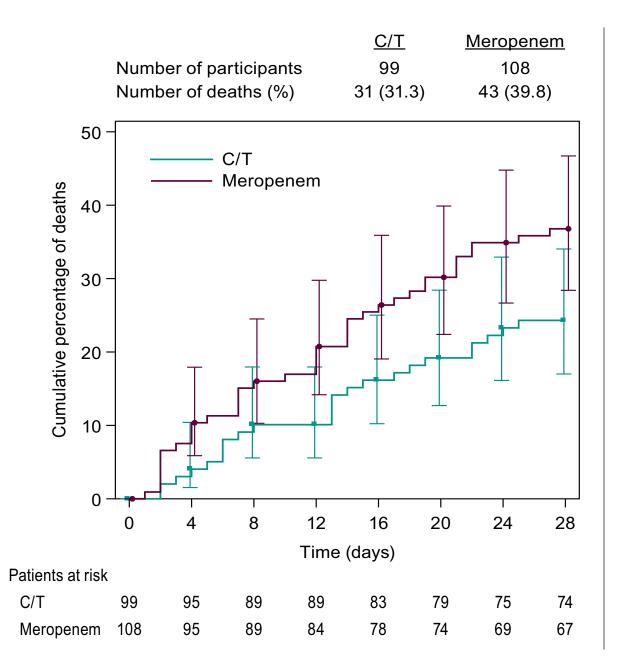
### Brief Report Susceptibility Testing Is Key for the Success of Cefiderocol **Treatment: A Retrospective Cohort Study**

Alexandre Bleibtreu <sup>1</sup>, Laurent Dortet <sup>2,3</sup>, Remy A. Bonnin <sup>2,3</sup>, Benjamin Wyplosz <sup>4</sup>, Sophie-Caroline Sacleux <sup>5</sup>, Liliana Mihaila <sup>2</sup>, Hervé Dupont <sup>6</sup>, Helga Junot <sup>7</sup>, Vincent Bunel <sup>8</sup>, Nathalie Grall <sup>9,10</sup>, Keyvan Razazi <sup>11</sup>, Clara Duran <sup>12</sup>, Pierre Tattevin <sup>13</sup>, Aurélien Dinh <sup>12,\*</sup> and on behalf of the Cefiderocol French Study Group <sup>†</sup>

| Patient          | I             | 2            | 3                                            | 4             | 5             | 6                          | 7             |               | 8                            | 9                    | 10                         | н                | 12                       |
|------------------|---------------|--------------|----------------------------------------------|---------------|---------------|----------------------------|---------------|---------------|------------------------------|----------------------|----------------------------|------------------|--------------------------|
| Type d'infection | Respiratoire  | Vasculaire   | Respiratoire<br>+ Abdominale<br>+ Vasculaire | Respiratoire  | Respiratoire  | IPOA                       | Respira       | atoire        | Respiratoire<br>+ Abdominale | Respiratoire         | Respiratoire<br>+ Urinaire | IOA +<br>cutanée | Respiratoire             |
| Isolat           | P. aeruginosa | A. baumannii | A. baumannii                                 | P. aeruginosa | P. aeruginosa | Enterobacter<br>hormaechei | K. pneumoniae | P. aeruginosa | P. aeruginosa                | P. aeruginosa        | P. aeruginosa              | P. aeruginosa    | P. aeruginosa            |
| Carbapénémase    | VIM-4         | OXA-23       | OXA-23                                       | -             | VIM-2         | -                          | OXA-48        | NDM-I         | VIM-2                        | OXA-836              | -                          | VIM-2            | -                        |
| Céfiderocol      | S (2)         | S (I)        | S (0.5)                                      | S (4)         | S (2)         | S (I)                      | S (0.5)       | S (4)         | l (8)                        | R (16)               | R (16)                     | R (>32)          | R (16)                   |
| Outcome          | Guérison      | Guérison     | Guérison                                     | Guérison      | Guérison      | Guérison                   | Ech           | ec            | Décès<br>(infection)         | Décès<br>(infection) | Echec                      | Echec            | Traitement<br>suppressif |

## **CEFTOLOZANE TAZOBACTAM**

#### RESEARCH


Open Access

Ceftolozane/tazobactam versus meropenem in patients with ventilated hospital-acquired bacterial pneumonia: subset analysis of the ASPECT-NP randomized, controlled phase 3 trial

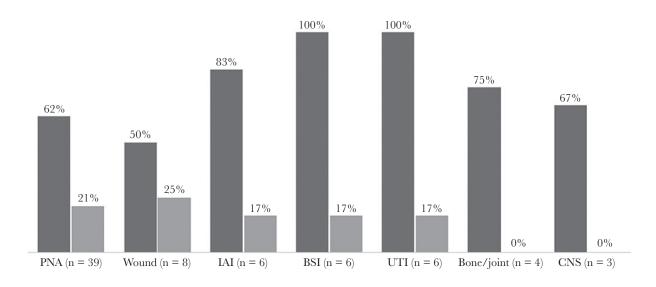
Jean-François Timsit<sup>1</sup>, Jennifer A. Huntington<sup>2</sup>, Richard G. Wunderink<sup>3</sup>, Nobuaki Shime<sup>4</sup>, Marin H. Kollef<sup>5</sup>, Ülo Kivistik<sup>6</sup>, Martin Nováček<sup>7</sup>, Álvaro Réa-Neto<sup>8</sup>, Ignacio Martin-Loeches<sup>9,10</sup>, Brian Yu<sup>2</sup>, Erin H. Jensen<sup>2</sup>, Joan R. Butterton<sup>2</sup>, Dominik J. Wolf<sup>2</sup>, Elizabeth G. Rhee<sup>2</sup> and Christopher J. Bruno<sup>2\*</sup>

- Sous groupe d'ASPECT-NP : PAVM
- 99 patients sous ceftolozane/tazobactam vs 108 sous méropénem
- Analyse ajustée sur facteurs confondants : mortalité 2 X plus élevée avec méropénem vs ceftolozane tazobactam

Facteurs de mauvais pronostic en analyse
 BMG ariée : vasopresseur et bactériémie



Critical Care 2021


#### **Open Forum Infectious Diseases**

### MAJOR ARTICLE



A Multicenter Evaluation of Ceftolozane/Tazobactam Treatment Outcomes in Immunocompromised Patients With Multidrug-Resistant *Pseudomonas aeruginosa* Infections Delaney E. Hart,<sup>1</sup> Jason C. Gallagher,<sup>2</sup> Laura A. Puzniak,<sup>3</sup> and Elizabeth B. Hirsch<sup>1</sup>: for the C/T Alliance to deliver Real-world Evidence (CARE)

Clinical cure All-cause 30-day mortality



- Etude rétrospective multicentrique (n=14)
- Patients immunodéprimés traités ≥24 avec C/T
- P. aeruginosa MDR
- 66 patients
- USI : 46%
- Infection respiratoire : 56%
- Mortalité J30 : 19%

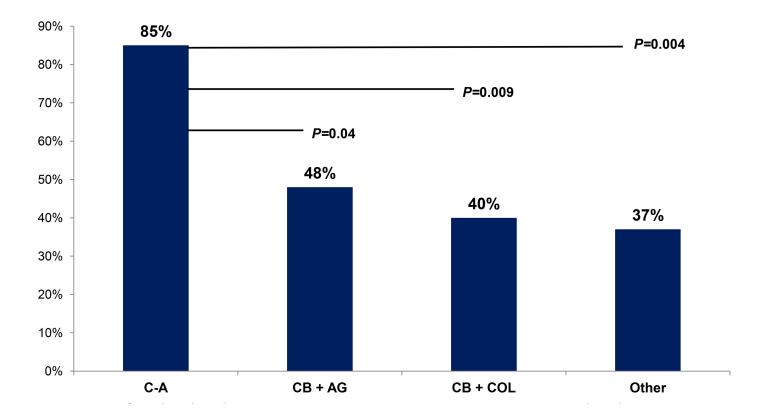
#### Outcome

| Clinical cure, all infection sources (n = 69), No. (%) 4            | 47 (68) |
|---------------------------------------------------------------------|---------|
|                                                                     |         |
| Pneumonia, receiving pneumonia dosing (n = 28) 2                    | 21 (75) |
| Pneumonia, receiving nonpneumonia dosing (n = 10)                   | 3 (30)  |
| 30-d all-cause mortality, all infection sources (n = 69), No. (%) 1 | 13 (19) |
| Pneumonia, receiving pneumonia dosing (n = 28)                      | 5 (18)  |
| Pneumonia, receiving nonpneumonia dosing (n = 10)                   | 3 (30)  |
| Length of C/T therapy, mean ± SD, d 13                              | 3 ± 11  |
| Length of hospital stay, median (IQR), d 3                          | 38 (54) |

## **CEFTAZIDIME AVIBACTAM**

Ceftazidime-Avibactam Is Superior to Other Treatment Regimens against Carbapenem-Resistant *Klebsiella pneumoniae* Bacteremia

Ryan K. Shields,<sup>a,c</sup> M. Hong Nguyen,<sup>a,c</sup> Liang Chen,<sup>d</sup> Ellen G. Press,<sup>a</sup> Brian A. Potoski,<sup>a,c,e</sup> Rachel V. Marini,<sup>c</sup> Yohei Doi,<sup>a,c</sup> Barry N. Kreiswirth,<sup>d</sup> Cornelius J. Clancy<sup>a,b,f</sup>


- Etude rétrospective (2009-2017) moncentrique
- Bactériémie à K. pneumoniae résistante aux carbapénèmes et ≥ 3j de traitement
- Traitement définitif par
  - carbapénème et aminoglycoside [CB+AG]
  - carbapénème et colistine [CB+COL]
  - Autres [comprenant monothérapie AG ou COL])
- Succès clinique à J30

| Caractéristiques             | C-A (n=I3) | CB+AG<br>(n=25) | CB+COL<br>(n=30) | Autres<br>(n=41) | р    |
|------------------------------|------------|-----------------|------------------|------------------|------|
| Sexe masculin                | 7 (54%)    | 16 (64)         | 18 (60)          | 21 (51)          | 0.75 |
| Âge (médian, range)          | 66 (32–91) | 57 (32–87)      | 59 (26–84)       | 62 (25–90)       | 0.63 |
| Hépatopathie                 | 0 (0)      | 9 (36%)         | 9 (30%)          | 13 (32%)         | 0.11 |
| Insuffisance<br>respiratoire | 5 (38%)    | 5 (20%)         | 8 (27%)          | 8 (20%)          | 0.51 |
| Immunodéprimé                | 5 (38%)    | 13 (52%)        | 14 (47%)         | 22 (54%)         | 0.78 |
| Transplanté organe<br>solide | 3 (23%)    | (44%)           | 9 (30%)          | 17 (41%)         | 0.46 |
| Score de Pitt                | 4 (1–6)    | 4 (0–9)         | 4 (0–9)          | 4 (0–9)          | 0.74 |
| Score APACHE II              | 20 (16–33) | 17 (8–38)       | 16 (7–36)        | 19 (4–34)        | 0.46 |
| KPC                          | 13 (100%)  | 24 (96%)        | 30 (100%)        | 39 (95%)         | 0.56 |
| Bactériémie primitive        | 3 (23%)    | 6 (24%)         | 5 (17%)          | 14 (34%)         | 0.41 |
| Abdominale                   | 2 (15%)    | 12 (48%)        | 16 (53%)         | 20 (49%)         | ns   |
| Respiratoire                 | 3 (23%)    | 2 (8%)          | 6 (20%)          | 3 (7%)           | ns   |
| Urinaire                     | 5 (38%)    | 2 (8ù)          | 2 (7%)           | 4 (10%)          | ns   |

### Ceftazidime-Avibactam Is Superior to Other Treatment Regimens against Carbapenem-Resistant *Klebsiella pneumoniae* Bacteremia

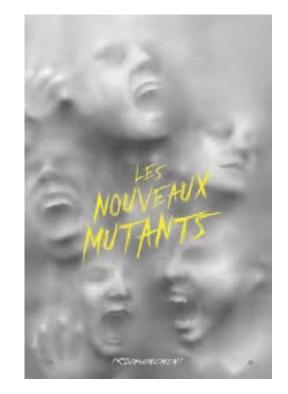
Ryan K. Shields,<sup>a,c</sup> M. Hong Nguyen,<sup>a,c</sup> Liang Chen,<sup>d</sup> Ellen G. Press,<sup>a</sup> Brian A. Potoski,<sup>a,c,e</sup> Rachel V. Marini,<sup>c</sup> Yohei Doi,<sup>a,c</sup> Barry N. Kreiswirth,<sup>d</sup> Cornelius J. Clancy<sup>a,b,f</sup>

- 37 EPC dont 31 KPC
- Monothérapie CAZ AVI 70%
- Succès clinique J30 : 59%
- Meilleure tolérance rénale



| Caractéristiques | C-A (n=13) | CB+AG<br>(n=25) | CB+COL<br>(n=30) | Autres<br>(n=41) | р    |
|------------------|------------|-----------------|------------------|------------------|------|
| Succès clinique  | (85%)      | 12 (48%)        | 12 (40%)         | 15 (37%)         | 0.02 |
| Survie J90       | 12 (92%)   | 14 (56%)        | 19 (63%)         | 20 (49%)         | 0.04 |

Ceftazidime-Avibactam Is Superior to Other Treatment Regimens against Carbapenem-Resistant *Klebsiella pneumoniae* Bacteremia


Ryan K. Shields,<sup>a,c</sup> M. Hong Nguyen,<sup>a,c</sup> Liang Chen,<sup>d</sup> Ellen G. Press,<sup>a</sup> Brian A. Potoski,<sup>a,c,e</sup> Rachel V. Marini,<sup>c</sup> Yohei Doi,<sup>a,c</sup> Barry N. Kreiswirth,<sup>d</sup> Cornelius J. Clancy<sup>a,b,f</sup>

### Analyse multivariée succès

| Facteurs (succès)             | Guérison<br>(n=50) | Echec<br>(n=59) | Р      | OR (IC 95%)       |
|-------------------------------|--------------------|-----------------|--------|-------------------|
| Néoplasie (n,%)               | 7 (14)             | 17 (29)         | 0, I   |                   |
| Bactériémie primitive (n,%)   | 19 (38)            | 9 (15)          | 0,006  | 4,5 (1,53-13,12)  |
| Dialyse (n,%)                 | 6 (12)             | 18 (31)         | 0,2    |                   |
| Score de Pitt (mediane-range) | 3 (0-9)            | 5 (0-9)         | O, I 5 | _                 |
| APACHE II (mediane-range)     | 17 (7-38)          | 21 (4-36)       | exclus | <u> </u>          |
| Réanimation (n,%)             | 21 (42)            | 35 (59)         | 0,24   |                   |
| Multi thérapie (≥2 ATB) (n,%) | 21 (42)            | ( 9)            | exclus |                   |
| TTT par <b>C-A (</b> n,%)     | 11 (22)            | 2 (3)           | 0,01   | 8,64 (1,61-46,39) |

## **RÉSISTANCE ET CAZ AVI**

- Emergence de Résistance chez Kl. pn KPC : jusqu'à 10% (mutation gène blaKPC)
- Variants hydrolysés par les carbapénèmes >> souches sensibles aux carbapénèmes
- Signification clinique inconnue !!!



**Observational Study** > J Antimicrob Chemother. 2022 Apr 27;77(5):1452-1460. doi: 10.1093/jac/dkac049.

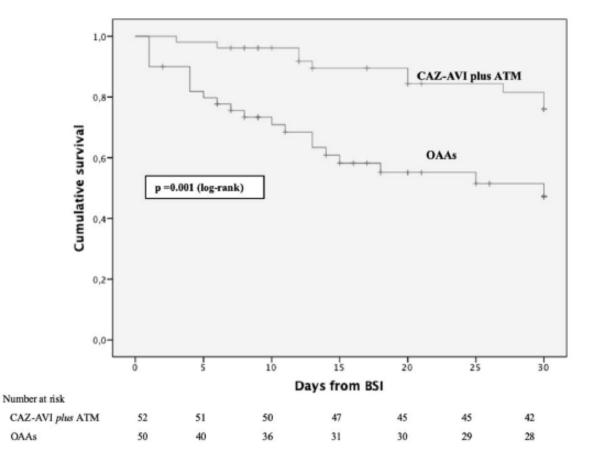
Impact of ceftazidime/avibactam versus best available therapy on mortality from infections caused by carbapenemase-producing **Enterobacterales (CAVICOR study)** 

#### Survival in patients with INCREMENT-CPE Survival in patients with INCREMENT-CPE score of $\leq$ 7 points (log rank 0.73) score of >7 points (log rank 0.004) CAZ-AVI -TTCAZ-AVI 0.8 0.8 Proportion of survivors of survivors ·---, 0,6\* Proportion o 0.4 0.2-Days from the start of treatment Days from the start of treatment

### **CAVICOR:** Survival outcomes in patients treated with CAZ–AVI vs BAT for infections caused by CPE\*1

| Variable*                        | Ceftazidime–avibactam<br>(n=189) | Best available therapy<br>(n=150) | P value |
|----------------------------------|----------------------------------|-----------------------------------|---------|
| 21-day clinical cure, n (%)      | 169 (89.4)                       | 119 (79.3)                        | 0.01    |
| Microbiological response, n (%)  | 100 (52.9)                       | 50 (33.3)                         | < 0.001 |
| Infection relapse, n (%)         | 24 (12.7)                        | 13 (8.6)                          | 0.24    |
| Crude mortality (30 days), n (%) | 26 (13.7)                        | 33 (22)                           | 0.04    |

CAVICOR: Outcomes<sup>\*1</sup>


#### Clinical Infectious Diseases

### MAJOR ARTICLE



Efficacy of Ceftazidime-avibactam Plus Aztreonam in Patients With Bloodstream Infections Caused by Metallo-β-lactamase–Producing Enterobacterales

Marco Falcone,<sup>1</sup> George L. Daikos,<sup>2</sup> Giusy Tiseo,<sup>1</sup> Dimitrios Bassoulis,<sup>2</sup> Cesira Giordano,<sup>3</sup> Valentina Galfo,<sup>1</sup> Alessandro Leonildi,<sup>3</sup> Enrico Tagliaferri,<sup>1</sup> Simona Barnini,<sup>3</sup> Spartaco Sani,<sup>4</sup> Alessio Farcomeni,<sup>5</sup> Lorenzo Ghiadoni,<sup>6</sup> and Francesco Menichetti<sup>1</sup>



- Etude prospective observationnelle
- Multicentrique : 3 hôpitaux (Italie et Grèce)
- 82 infections à NDM
- 20 infections à VIM
- Mortalité J30 : 19,2% avec CAZ-AVI + ATM vs 44% autre traitement actif

## Table 4. Cox Regression Analysis of Factors Independently Associated With 30-Day Mortality

| Factor                         | HR (95% CI)       | <i>P</i> Value |
|--------------------------------|-------------------|----------------|
| Cardiovascular disease         | 6.62 (2.77–15.78) | <.001          |
| Solid organ transplantation    | 3.52 (1.42-8.69)  | .006           |
| SOFA score (1-point increment) | 1.21 (1.1–1.32)   | <.001          |
| CAZ-AVI + ATM (vs OAAs)        | 0.17 (.07–.41)    | < .001         |

## MÉROPÉNEM-VABORBACTAM

#### **Open Forum Infectious Diseases**

### MAJOR ARTICLE



Real-world, Multicenter Experience With Meropenem-Vaborbactam for Gram-Negative Bacterial Infections Including Carbapenem-Resistant *Enterobacterales* and *Pseudomonas aeruginosa* 

Sara Alosaimy,<sup>1</sup> Abdalhamid M. Lagnf,<sup>1</sup> Taylor Morrisette,<sup>1</sup> Marco R. Scipione,<sup>2</sup> Jing J. Zhao,<sup>2</sup> Sarah C. J. Jorgensen,<sup>1,3</sup> Ryan Mynatt,<sup>1,4</sup> Travis J. Carlson,<sup>56,©</sup> Jinhee Jo,<sup>5</sup> Kevin W. Garey,<sup>5</sup> David Allen,<sup>7</sup> Kailynn DeRonde,<sup>8</sup> Ana D. Vega,<sup>8</sup> Lilian M. Abbo,<sup>8</sup> Veena Venugopalan,<sup>9</sup> Vasilios Athans,<sup>10</sup> Stephen Saw,<sup>10</sup> Kimberly C. Claeys,<sup>11,©</sup> Mathew Miller,<sup>12</sup> Kyle C. Molina,<sup>12</sup> Michael Veve,<sup>1,13,14</sup> Wesley D. Kufel,<sup>15,16</sup> Lee Amaya,<sup>17,18</sup> Christine Yost,<sup>17</sup> Jessica Ortwine,<sup>19</sup> Susan L. Davis,<sup>120</sup> and Michael J. Rybak<sup>1,2,21,©</sup>

- Etude multicentrique rétrospective observationnelle
- I3 centres aux US entre Septembre 2017 et Juillet 2020
- 79% CRE : K. pneumoniae (53.5%), Escherichia coli (25.3%), Enterobacter spp. (24.2%), Citrobacter freundii (4%)
- 2 A. baumannii + 8 P. aeruginosa (évolution favorable)

Clinical Infectious Diseases

### BRIEF REPORT

Early Experience With Meropenem-Vaborbactam for Treatment of Carbapenem-resistant Enterobacteriaceae Infections

Ryan K. Shields,<sup>1,2,3</sup> Erin K. McCreary,<sup>3</sup> Rachel V. Marini,<sup>3</sup> Ellen G. Kline,<sup>1</sup> Chelsea E. Jones,<sup>1</sup> Binghua Hao,<sup>1,2</sup> Liang Chen,<sup>4</sup> Barry N. Kreiswirth,<sup>4</sup> Yohei Doi,<sup>1</sup> Cornelius J. Clancy,<sup>1,2,5</sup> and M. Hong Nguyen<sup>1,2,3</sup>

- Etude prospective observationnelle
- 20 patients avec infections à CRE
- Traités par meropenem-vaborbactam 2 g IV x3 par jour > 48 h
- Entre Décembre 2017 et Avril 2019
- I8 KPC et 2 non KPC

## AUTRES UTILISATIONS

|                                   | Alosaimy S, et al | Shields RK, et al. |
|-----------------------------------|-------------------|--------------------|
| N patients                        | 126               | 20                 |
| Age (Médiane, IQR)                | 56 (37 – 68)      | 56 (31 – 83)       |
| Hommes                            | 62,7%             | 60%                |
| Réanimation                       | 49,2%             | 70,0%              |
| APACHE-II (Médiane, IQR)          | 18 (12 – 26)      | 20 (7 – 40)        |
| Infection respiratoire            | 38,1%             | 40,0%              |
| Infection urinaire                | 13,5%             | 5,0%               |
| Infection abdominale              | 19,0%             | 5,0%               |
| Infection cutanée ou sous-cutanée | 10,3%             | 10,0%              |
| Bactériémie                       | 9,5%              | 40,0%              |
| Monothérapie                      | 65,9%             | 80,0%              |
| Polymicrobienne                   | 11,9%             | -                  |
| Enterobacterales                  | 86,7%             | 100%               |
| CRE                               | 78,6%             | 100%               |
| Klebsiella pneumoniae             | 42,1%             | 70,0%              |
| Escherichia coli                  | 19,8%             | 10,0%              |
| Enterobacter cloacae              | 16,7%             | 5,0%               |
| Pseudomonas aeruginosa            | 8,7%              | -                  |
| Guérison clinique                 | 88,1%             | 65,0%              |

#### Infect Dis Ther (2018) 7:439–455 https://doi.org/10.1007/s40121-018-0214-1

) CrossMark

#### ORIGINAL RESEARCH

Effect and Safety of Meropenem–Vaborbactam versus Best-Available Therapy in Patients with Carbapenem-Resistant Enterobacteriaceae Infections: The TANGO II Randomized Clinical Trial

Richard G. Wunderink · Evangelos J. Giamarellos-Bourboulis · Galia Rahav · Amy J. Mathers · Matteo Bassetti · Jose Vazquez · Oliver A. Cornely · Joseph Solomkin · Tanaya Bhowmick · Jihad Bishara · George L. Daikos · Tim Felton · Maria Jose Lopez Furst · Eun Jeong Kwak · Francesco Menichetti · Ilana Oren · Elizabeth L. Alexander · David Griffith · Olga Lomovskaya · Jeffery Loutit · Shu Zhang · Michael N. Dudley · Keith S. Kaye

- TANGOII : Essai randomisé ouvert (2014-2017) (2:1)
- Monothérapie Meropénème Vaborbactam vs meilleur traitement possible pour EPC
- Différents type d'infections
- 47 EPC confirmés = population MITT
- Guérison clinique
- Mortalité J28

| Caractéristiques         | M-V (n=32)  | BAT (n=15)  |
|--------------------------|-------------|-------------|
| Âge (médian, SD)         | 63.5 (14.1) | 60.2 (13.0) |
| Sexe féminin             | 18 (56.3%)  | 5 (33.3%)   |
| Point de départ          |             |             |
| Bactériémie primitive    | 14 (43.8%)  | 8 (53.3%)   |
| Infections urinaires     | 12 (37.5%)  | 4 (26.7%)   |
| Infections respiratoires | 4 (12.5%)   | l (6.7%)    |
| Infections abdominales   | 2 (6.3%)    | 2 (13.3%)   |
| Microbiologie            |             |             |
| K. pneumoniae            | 29 (90.6%)  | 12 (80.0%)  |
| E. coli                  | 3 (9.4%)    | l (6.7%)    |
| E. cloacae               | I (3.1%)    | 2 (13.3%)   |
| Proteus mirabilis        | 0           | 2 (13.3%)   |
| Serratia mascescens      | I (3.1%)    | l (6.7%)    |
| Terrain/gravité          |             |             |
| Charlson ≥ 6             | 14 (43.8%)  | (73.3%)     |
| SIRS                     | 15 (46.9%)  | 6 (40.0%)   |
| Réanimation              | 5 (15.6%)   | 3 (20.0%)   |
| Immunodéprimés           | (34.4%)     | 8 (53.3%)   |

| Critères (Population mERC-MITT)                              | VABOREM, N<br>(%)(N=32) | MAD, N (%)<br>(N=15) | Différence*<br>(95 % IC)  | р        | Différence<br>relative <sup>†</sup> |
|--------------------------------------------------------------|-------------------------|----------------------|---------------------------|----------|-------------------------------------|
|                                                              | Critères d'eff          | icacité              |                           |          |                                     |
| Guérison clinique à la fin du ttt IV                         | 21 (65,6)               | 5 (33,3)             | 32,3 (3,3 to 61,3)        | 0,03     | 97,0                                |
| Guérison clinique à J7±2 après le traitement IV              | 19 (59,4)               | 4 (26,7)             | 32,7 (4,6 to 60,8)        | 0,02     | 122,5                               |
| Guérison microbiologique <sup>‡</sup> à la fin du ttt IV     | 21 (65,6)               | 6 (40,0)             | 25,6 (-4,1 to 55,4)       | 0,09     | 64,0                                |
| Guérison microbiologique <sup>‡</sup> à J7±2 après le ttt IV | 17 (53,1)               | 5 (33,3)             | 19,8 (-9,7 to 49,3)       | 0,19     | 59,5                                |
| Mortalité à J28                                              | 5 (15,6)                | 5 (33,3)             | 3,3) -17,7 (-44,7 to 9,3) |          | -53,2                               |
| Analyse exploratoire du profil bénéfice                      | s-risques de VAB        | OREM Vs la           | meilleure antibioth       | érapie d | isponible                           |
|                                                              | (MAD)                   |                      |                           |          |                                     |
| Mortalité toutes causes à J28 et néphrotoxicité              | 8 (25,0)                | 6 (40,0)             | -15,0 (-44,0 to 14,0)     | 0,31     | -37,5                               |
| Echec clinique et néphrotoxicité                             | 10 (31,3)               | 12 (80,0)            | -48,7 (-74,6 to -22,9)    | <0,001   | -60,9                               |
| Mortalité toutes causes à J28 et Els                         | 6 (18,8)                | 9 (60,0)             | -41,2 (-69,5 to -13,0)    | 0,004    | -68,7                               |
| Echec clinique ou Els renal                                  | 9 (28,1)                | 12 (80,0)            | -51,9 (-77,4 to -26,3)    | <0,001   | -64,9                               |

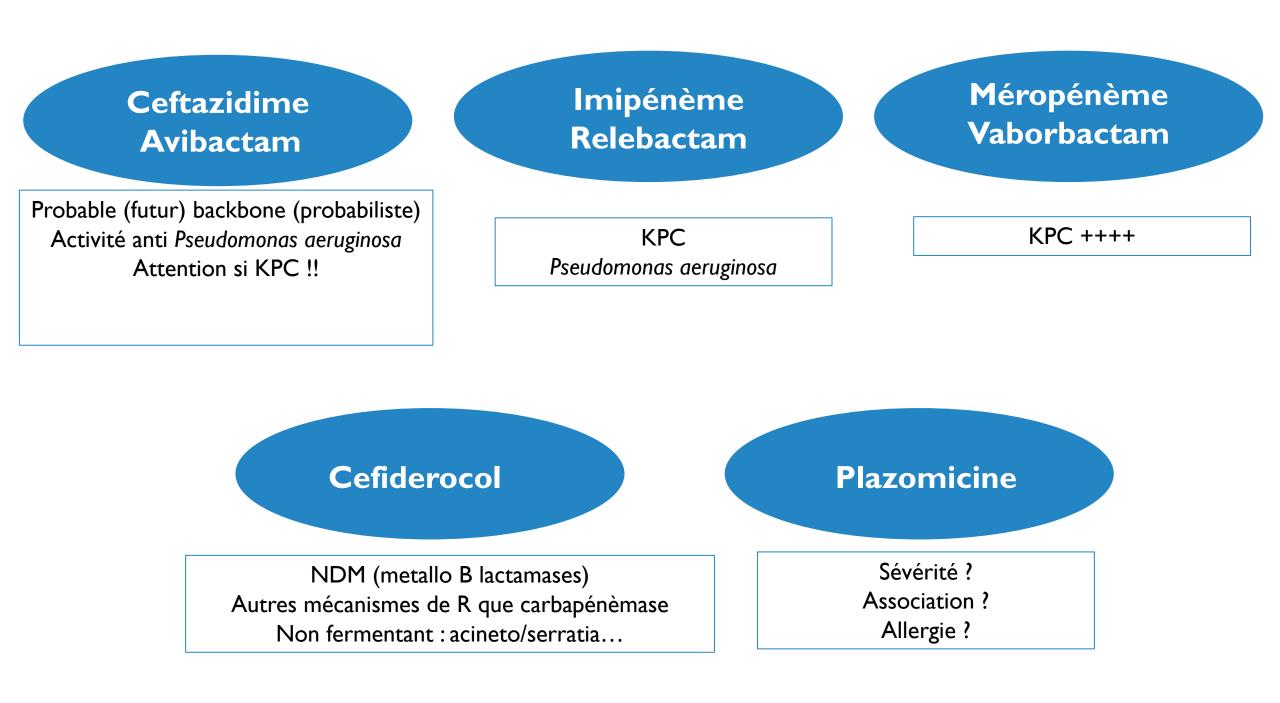


CLINICAL THERAPEUTICS



Meropenem-Vaborbactam versus Ceftazidime-Avibactam for Treatment of Carbapenem-Resistant *Enterobacteriaceae* Infections

Renee Ackley, <sup>a</sup> Danya Roshdy, <sup>a</sup> Jacqueline Meredith, <sup>a</sup> Sarah Minor, <sup>b</sup> William E. Anderson, <sup>c</sup> Gerald A. Capraro, <sup>d</sup> Christopher Polk<sup>e</sup>


- Etude rétrospective multicentrique (février 2015octobre 2018)
- Infections à EPC recevant
   Ceftazidime Avibactam ou
   Méropénème Vaborbactam ≥ 72 h
- Exclusion des patients avec IU localisée et exposition antibiotique répétée ultérieure
- Succès clinique
- Mortalité J30 et J90, récidive émergence de résistance, EIG
   AAC 2020

|                        | C-A (n=105)      | MEV (n=26)       | P value |
|------------------------|------------------|------------------|---------|
| Sexe masculin          | 58 (55,2)        | 12 (46,2)        | NS      |
| Âge médian (IQR)       | 62,0 (51-79)     | 57,5 (50,0-70,0) | NS      |
| Immunodéprimés         | 12 (11,4)        | 4 (15,4)         | NS      |
| APACHE II              | 26,0 (22,0-30,0) | 27 (24-34)       | NS      |
| Bactériémie primitive  | 7 (6,7)          | l (3,8)          | NS      |
| Infection urinaire     | 13 (35,2)        | I (12,5)         | NS      |
| Infection abdominale   | 6 (16,2)         | 3 (37,5)         | NS      |
| Infection respiratoire | 7 (18,9)         | 2 (25,0)         | NS      |
| EPC responsable        |                  |                  | NS      |
| K. pneumoniae spp.     | 76 (72,4)        | 15 (57,7)        | NS      |
| E. coli                | 9 (8,6)          | 3 (11,5)         | NS      |
| Enterobacter spp       | 20 (19,1)        | 8 (30,8)         | NS      |
| Citrobacter spp        | 2 (1,9)          | 2 (7,7)          | NS      |
| Guérison clinique      | 26 (63,4)        | 39 (60,9)        | NS      |
| Mortalité J90          | 9(22)            | 20 (31,2)        | NS      |

| Antimicrobial Agents                                                                                       | CLINICAL THERAPEUTICS                                                                           |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|                                                                                                            | Check for<br>updates                                                                            |
|                                                                                                            | versus Ceftazidime-Avibactam for                                                                |
| Treatment of Carbapenen<br>Infections                                                                      | n-Resistant Enterobacteriaceae                                                                  |
| Renee Ackley, <sup>a</sup> Danya Roshdy, <sup>a</sup> Jacqueline Meredith<br>Christopher Polk <sup>e</sup> | n,ª Sarah Minor, <sup>b</sup> William E. Anderson, <sup>c</sup> Gerald A. Capraro, <sup>d</sup> |

### Augmentation de la CMI en monothérapie CZA et émergence de résistances

| CMI initiale<br>(mg/I) | CMI récidive<br>(mg/l) | Emergence<br>de résistance | Durée de<br>traitement<br>C-A (jours) | Point de<br>départ | Dialyse |
|------------------------|------------------------|----------------------------|---------------------------------------|--------------------|---------|
| 0,25                   | 0,75                   | Non                        | 10,6                                  | abdominal          | Non     |
| 0,75                   | ١,5                    | Non                        | 7,6                                   | respiratoire       | Non     |
| 0,75                   | 12                     | Oui                        | 10,3                                  | respiratoire       | Oui     |
| 4                      | 12                     | Oui                        | 13,2                                  | respiratoire       | Oui     |
| 2                      | 32                     | Oui                        | 4,4                                   | respiratoire       | Oui     |



## TESTEZ CORRECTEMENT TOUS LES ANTIBIOTIQUES SANS A PRIORI !

## PUIS DISCUTEZ....À PLUSIEURS



## Quelle est l'antibiothérapie de choix pour traiter les infections à Entérobacterales résistantes aux carbapénèmes (ERC) ?

**Traitement des infections graves** 

- OXA 48 & OXA 48 « like » : Ceftazidime-avibactam est recommandé y compris chez l'enfant.
- KPC : Ceftazidime-avibactam, Meropénème-vaborbactam, ou Imipénème-cilastatinrelebactam sont recommandés.
- ERC productrices de métallo-bêta-lactamases et/ou résistantes à tous les autres antibiotiques, y compris Ceftazidime-avibactam et Méropénème-vaborbactam : l'association Aztréonam + Ceftazidime-avibactam ou le Céfidérocol peuvent être proposés après avis spécialisé.

Chez l'enfant l'association Aztréonam + Ceftazidime-avibactam est préférée au Céfidérocol, pour lequel peu de données sont actuellement disponibles.



## Quelle est l'antibiothérapie de choix pour traiter les infections à Enterobacterales résistantes aux carbapénèmes (ERC) ?

**Traitement des infections non graves** 

### Infections autres qu'urinaires

L'utilisation d'antibiotiques anciens, choisis parmi ceux actifs in-vitro est de bonne pratique clinique. Un avis spécialisé est recommandé, pour des considérations de politique de bon usage des antibiotiques.

### Infections urinaires

L'utilisation des aminosides, y compris la Plazomicine (quand elle sera disponible) est proposée. La Tigécycline peut être envisagée en dernier recours.



## Quelle est l'antibiothérapie de choix pour traiter les infections à Enterobacterales résistantes aux carbapénèmes (ERC) ?

Associations d'antibiotiques

- Infections à ERC sensibles à, et traitées par Ceftazidime-avibactam, Méropénèmevaborbactam, Céfidérocol ou Aztréonam+Ceftazidime-avibactam : les associations ne sont pas recommandées.
- Infection graves à ERC sensibles in-vitro uniquement aux Polymyxines, Aminosides, Tigécycline ou Fosfomycine; ou en cas de non-disponibilité des nouvelles associations ßL/IßL
   : un traitement avec plus d'un médicament actif in-vitro est suggéré. Aucune recommandation pour ou contre des combinaisons spécifiques ne peut être fournie.
- Il est suggéré de ne pas utiliser d'associations comprenant des Carbapénèmes pour les infections à ERC, sauf si la CMI du Méropénème est ≤8 mg/L. Dans ce cas le Méropénème en perfusion prolongée et à haute dose peut être utilisé dans le cadre d'un traitement combiné.



Quelle est l'antibiothérapie de choix pour traiter les infections à Entérobacterales résistantes aux carbapénèmes (ERC) ?

Antibiotiques non recommandés

- La Tigécycline ne doit pas être utilisée pour les bactériémies et les pneumonies associées aux soins ou sous ventilation mécanique. Dans les autres situations son utilisation nécessite un avis spécialisé.
- Il n'y a pas de preuves permettant de recommander ou de déconseiller l'utilisation de la Fosfomycine en monothérapie pour traiter les ERC.



# Quelle est l'antibiothérapie de choix pour traiter les infections à *Pseudomonas aeruginosa* résistant aux carbapénèmes (CRPa) ?

**Traitement des infections graves** 

- Ceftolozane-tazobactam est recommandé
- En cas de résistance à Ceftolozane-tazobactam les alternatives sont : Imipénème-relebactam, Céfidérocol et Ceftazidime-avibactam.
- En l'absence d'autre alternative, Colimycine, Aminosides ou Fosfomycine peuvent être discutées sur avis spécialisé

### **Traitement des infections non graves**

Ou pour les infections urinaires ou biliaires, bactériémiques ou non, après contrôle de la source

L'utilisation d'antibiotiques anciens, choisi parmi ceux actifs in-vitro, est de bonne pratique clinique, pour des considérations de politique de bon usage des antibiotiques.



Quelle est l'antibiothérapie de choix pour traiter les infections à *Pseudomonas aeruginosa* résistant aux carbapénèmes (CRPa) ?

Associations d'antibiotiques

- En l'absence de données probantes, il n'est pas possible de recommander ou déconseiller l'utilisation d'associations avec les nouveaux BL/IBL (Ceftazidime-avibactam et Ceftolozanetazobactam) ou le Céfidérocol.
- En cas d'utilisation de Colimycine, Aminoside ou Fosfomycine, une association de 2 antibiotiques est recommandée.
   Aucune recommandation pour ou contre des combinaisons spécifiques ne peut être fournie.



## Quelle est l'antibiothérapie de choix pour traiter les infections à Acinetobacter baumannii résistant aux carbapénèmes (CRAB) ?

Ampicilline-sulbactam est le traitement de référence (forte dose : ampicilline 6g/sulbactam 3g IV toutes les 8h)

Traitement des infections graves ou à haut risque

Une association est recommandée, comportant 2 antibiotiques actifs in vitro en privilégiant une association à base d'Ampicilline-sulbactam, parmi :

- Ampicilline-sulbactam,
- Colimycine,
- Aminoglycosides,
- Tigécycline,
- Meropénème (si CMI< 8mg/L, à dose élevée en perfusion prolongée)

Les associations Colimycine-Carbapénèmes et Colimycine-Rifampicine ne sont pas recommandées.

Le Céfidérocol ne doit être utilisé qu'en l'absence d'autre alternative et en association.



### Quelle est l'antibiothérapie de choix pour traiter les infections à Acinetobacter baumannii résistant aux carbapénèmes (CRAB) ?

**Traitement des infections non graves** 

Une monothérapie est possible

- Ampicilline-sulbactam est le traitement de référence
- Colimycine ou Tigécycline à forte dose peuvent être utilisées